174 research outputs found

    Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping

    Full text link
    The mechanical properties of brain tissue play a pivotal role in neurodevelopment and neurological disorders. Yet, at present, there is no consensus on how the different structural parts of the tissue contribute to its stiffness variations. Here, we have gathered depth-controlled indentation viscoelasticity maps of the hippocampus of isolated horizontal live mouse brain sections. Our results confirm the highly viscoelestic nature of the material and clearly show that the mechanical properties correlate with the different morphological layers of the samples investigated. Interestingly, the relative cell nuclei area seems to negatively correlate with the stiffness observed

    Dementia in Parkinson's Disease Correlates with α-Synuclein Pathology but Not with Cortical Astrogliosis

    Get PDF
    Dementia is a common feature in Parkinson's disease (PD) and is considered to be the result of limbic and cortical Lewy bodies and/or Alzheimer changes. Astrogliosis may also affect the development of dementia, since it correlates well with declining cognition in Alzheimer patients. Thus, we determined whether cortical astrogliosis occurs in PD, whether it is related to dementia, and whether this is reflected by the presence of glial fibrillary acidic protein (GFAP) and vimentin in cerebrospinal fluid (CSF). We have examined these proteins by immunohistochemistry in the frontal cortex and by Western blot in CSF of cases with PD, PD with dementia (PDD), dementia with Lewy bodies (DLB) and nondemented controls. We were neither able to detect an increase in cortical astrogliosis in PD, PDD, or DLB nor could we observe a correlation between the extent of astrogliosis and the degree of dementia. The levels of GFAP and vimentin in CSF did not correlate to the extent of astrogliosis or dementia. We did confirm the previously identified positive correlation between the presence of cortical Lewy bodies and dementia in PD. In conclusion, we have shown that cortical astrogliosis is not associated with the cognitive decline in Lewy body-related dementia

    Regulation of stearoyl-CoA desaturase-1 after central and peripheral nerve lesions

    Get PDF
    BACKGROUND: Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1). This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C. RESULTS: In situ hybridization and immunohistochemistry demonstrated a strong up-regulation of SCD at mRNA and protein level in regenerating neurons of the rat facial nucleus whereas non-regenerating Clarke's and Red nucleus neurons did not show an induction of this gene. CONCLUSION: This differential expression points to a functionally significant role for the SCD-1 in the process of regeneration

    Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Get PDF
    BACKGROUND: It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. RESULTS: To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (~15%) have been demonstrated to be differentially expressed. CONCLUSIONS: The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues

    Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation

    Get PDF
    Loss of neurons in neurodegenerative diseases is usually preceded by the accumulation of protein deposits that contain components of the ubiquitin/proteasome system. Affected neurons in Alzheimer's disease often accumulate UBB+1, a mutant ubiquitin carrying a 19–amino acid C-terminal extension generated by a transcriptional dinucleotide deletion. Here we show that UBB+1 is a potent inhibitor of ubiquitin-dependent proteolysis in neuronal cells, and that this inhibitory activity correlates with induction of cell cycle arrest. Surprisingly, UBB+1 is recognized as a ubiquitin fusion degradation (UFD) proteasome substrate and ubiquitinated at Lys29 and Lys48. Full blockade of proteolysis requires both ubiquitination sites. Moreover, the inhibitory effect was enhanced by the introduction of multiple UFD signals. Our findings suggest that the inhibitory activity of UBB+1 may be an important determinant of neurotoxicity and contribute to an environment that favors the accumulation of misfolded proteins

    Denser brain capillary network with preserved pericytes in Alzheimer's disease

    Get PDF
    Pericytes are vascular mural cells that surround capillaries of the central nervous system (CNS). They are crucial for brain development and contribute to CNS homeostasis by regulating blood-brain barrier function and cerebral blood flow. It has been suggested that pericytes are lost in Alzheimer's disease (AD), implicating this cell type in disease pathology. Here, we have employed state-of-the-art stereological morphometry techniques as well as tissue clearing and two-photon imaging to assess the distribution of pericytes in two independent cohorts of AD (n = 16 and 13) and non-demented controls (n = 16 and 4). Stereological quantification revealed increased capillary density with a normal pericyte population in the frontal cortex of AD brains, a region with early amyloid beta deposition. Two-photon analysis of cleared frontal cortex tissue confirmed the preservation of pericytes in AD cases. These results suggest that pericyte demise is not a general hallmark of AD pathology

    Specific Human Astrocyte Subtype Revealed by Affinity Purified GFAP+1 Antibody; Unpurified Serum Cross-Reacts with Neurofilament-L in Alzheimer

    Get PDF
    The human GFAP splice variants GFAPΔ164 and GFAPΔexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPα still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L). This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes

    Abundant kif21b is associated with accelerated progression in neurodegenerative diseases

    Get PDF
    Kinesin family member 21b (kif21b) is one of the few multiple sclerosis (MS) risk genes with a presumed central nervous system function. Kif21b belongs to the kinesin family, proteins involved in intracellular transport of proteins and organelles. We hypothesised that kif21b is involved in the neurodegenerative component of MS and Alzheimer¿s (AD) disease. Post-mortem kinesin expression was assessed in 50 MS, 58 age and gender matched non-demented controls (NDC) and 50 AD. Kif21b expression was five-fold increased in AD compared to MS and NDC aged below 62 years (p¿=¿8*10¿5), three-fold between 62¿72 years (p¿=¿0.005) and not different above 72 years. No significant differences were observed between MS and NDC. In AD, kif21b expression was two-fold increased in Braak stage 6 (scoring for density of neurofibrillary tangles) compared with stage 5 (p¿=¿0.003). In MS patients, kif21b correlated with the extent of grey matter demyelination (Spearman¿s rho¿=¿0.31, p¿=¿0.03). Abundant kif21b, defined as expression above the median, was associated with a two-fold accelerated development of the Kurtzke Expanded Disability Status Scale (EDSS) 6.0 (median time in low kif21b group 16 years vs. high kif21b 7.5 years, log-rank test p¿=¿0.04) in MS. Given the genetic association of kif21b with MS, the results were stratified according to rs12122721[A] single nucleotide polymorphism (SNP). No association was found between kif21b expression or the time to EDSS 6 in kif21b risk SNP carriers compared to non-risk carriers. Kif21b was expressed in astrocytes in addition to neurons. Upon astrocyte activation, kif21b increased nine-fold. Abundant kif21b expression is associated with severe MS and AD pathology and with accelerated neurodegeneration independent of the kif21b risk SNP

    Reactive astrogliosis in the era of single-cell transcriptomics

    Get PDF
    Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes
    corecore